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Abstract--Impinging streams reactors have been employed in various fields of chemical engineering, as 
a means of enhancing the rates of convective transfer processes. The analysis of the hydrodynamics of 
gas-solids suspension flows in these reactors requires that collisions between particles be taken into 
account. The stochastic model for gas-solids suspension flows, based on the Boltzmann transport 
equation, is presented. The system of nonlinear integro-differential transport equations is solved using the 
Monte Carlo method. A qualitative agreement is obtained between the predicted and experimental results 
for the particle concentration distribution in an impinging streams reactor. The particle concentrations 
in the impingement zone of two particle-laden jets are strongly reduced by the effects of inter-particle 
collisions. The analysis of laminar pipe flows in the absence of gravity and lift forces (Saffman force etc.) 
reveals a collision-induced migration of particles towards the pipe wall and, to a lesser extent, towards 
the core. In turbulent vertical pipe flow, particles migrate towards the pipe core and the laminar sublayer. 
Collison-indueed effects become more pronounced in mixture flows with particles of different sizes and 
densities. 

Key Words: impinging streams, two-phase flows, Boltzmann equation, Monte Carlo method 

1. I N T R O D U C T I O N  

Fluidized or spouted beds of  granular materials (e.g. Perry & Chilton 1973, Chap. 20, pp. 16-74) 
are commonly used in processes involving gas-solid particles suspensions. The rate of  convective 
transfer processes, such as drying, leaching, combustion and mixing of  particles, is an increasing 
function of  the relative velocity between the phases. In such apparatus, however, the relative 
velocity between the phases cannot exceed the fluidization velocity, which is relatively small. In 
order to compensate for the low transfer rates, longer particle residence times are required, 
necessitating larger equipment volumes or longer batch durations. 

Impinging streams reactors, first proposed by Elperin (1961), have been suggested as an 
alternative method. In such reactors, two gas-solids suspension streams flowing in opposite 
directions are allowed to impinge (see figure 1). Assuming that the solid particles are initially at 
kinematic equilibrium, i.e. moving with a velocity identical to that of the gas, and that particles 
maintain high relative velocities when penetrating the opposite stream, the relative velocity between 
the phases reaches up to twice the gas inlet velocity. After penetrating into the opposite stream, 
particles attain a kinematic equilibrium with the gas, are carried into the oiginal  stream and so 
forth. These particle oscillations between the streams result in increased particle residence times. 
The merits of  impinging streams reactors have recently resulted in their employment for various 
chemical engineering applications. However, inter-particle collisions apparently decrease the 
particle residence time in the system, thereby impairing the reactor's performance (Elperin 1972; 
Tamir & Kitron 1987). 

While impinging streams reactors constitute a new motivation for modelling particle collisions 
in suspension flows, inter-particle collisions have long hindered the analysis of  industrial systems 
such as pneumatic transport of  solids, fluidized beds etc. In addition to averaged flow behaviour, 
the statistical distribution of  the particle flow properties deserves attention as a potential aid for 
facilitating the cumbersome measurement of  dispersed-phase properties in multiphase flows (e.g. 
Hetsroni 1982, Chap. 10, pp. 113-118). The aim of  this work is to investigate collision-induced 
phenomena in gas-solids suspensions using the stochastic model based on the Boltzmann transport 
equation and the Monte Carlo method. 
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Figure 1. Scheme of  an impinging streams reactor. 
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G a s ,  P a r t i c L e s  

Collisions between particles are caused by differences in particle velocities. The collisions arise 
due to differences in the response to a flow field by particles of  different size or mass, flow field 
shear, stochastic effects in the flow field, such as fluid turbulence and Brownian motion, and 

' random excitations of the flow field such as wakes, sonic waves and flow instabilities. 
An analogy between particle collisions in suspensions and molecular collisions encountered in 

the kinetic theory of gases enables the application of the Boltzmann equation for the solid particles, 
as first suggested by Culick (1964) and Pai (1974). Effects which must be accounted for in the 
derivation of the Boltzmann equation for suspension flows, and which are normally insignificant 
in the derivation of the Boltzmann equation in gas dynamics, include solid particle-gas interactions, 
involving velocity-dependent forces, inelasticity and friction in particle collisions and a size 
distribution among the particles. An advantage of the statistical mechanics approach in suspension 
flow modelling is the availability of experimental data about the dynamics of inter-particle 
collisions. 

Consider the flow of a gas carrying small spherical irrotational solid particles of different sizes. 
The suspension is considered to be sufficiently dilute for the particle motion to be described as 
collisionless motion due to forces exerted by the gas, interrupted by inter-particle collisions. Only 
binary collisions between particles are considered, and the duration of a collision is assumed to 
be negligibly small compared to the time of collisionless motion. The latter assumption allows us 
to neglect hydrodynamical effects during collisions, and is valid when the ratio of  the solid particle 
density pp to the gas density Po is much greater than unity, i.e. pp/po>> 1 (Marble 1964). 
Furthermore, inter-particle collisions are assumed to only involve pairs of particles having 
uncorrelated pre-collision velocities. The above assumptions are similar to those made in the 
derivation of the Boltzmann transport equation in gas dynamics (e.g. Lifshitz & Pitaevskii 1981, 
pp. 67-72). 

In order to apply the above model, the deviation in the trajectories of colliding particles due to 
hydrodynamical interaction, causing a reduction in collision rate (Langmuir & Blodget 1948; 
Michael & Norey 1969), must be neglected. The validity of this assumption is discussed below. 

The dynamics of inter-particle collisions have been considered in detail by Jenkins & Savage 
(1983), Ogawa (1983) and Soo (1983). Supposing the outward unit normal vector n at the collision 
surface to be constant during particle collisions, particle velocities normal to the plane of contact 
before and after the collision are related by the following empirical expression: 

(v~ - v~)" n -- - E (v] - v2) -n, [1] 

where v is a linear velocity, 1 and 2 are particle indices, primes denote post-collision values and 
E (0 < e < 1) is the restitution coefficient. The case of E = 1 corresponds to an elastic collision. The 
friction between colliding particles causes a reduction in the relative velocity in the direction 
tangential to the plane of collision: 

(v, - v2).lr - (v; - v~).~ = r/(1 + E)(vl - v2)'n, [2] 

where t/ is the coefficient of solid friction and • is a unit vector normal to the vector n. 
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According to these assumptions, a collision between two particles of masses m~, • being the 
particle index, results in the following particle linear velocities: 

v.'. = v ~ +  (-ly(~-:~){(1 + c)[(v~- v~).n]n + (1-  R)[(Vl- v2)'~]~}, [3] 

where # is the reduced mass, given as 

m l  m 2 . 

/~ = (m, + m~)" [4] 

and R is given as 
{ i - r / ( l + E ) c o t a n 0  if 0 " ~ 0 ~ < 2  

R(O)= if 0~<0~<0", [5] 

where 

and 

0 = cos-'(-n" (v, - 

\ / [6] 

0* = tan-~r/(l + E). [7] 

The discontinuity in R arises from the stipulation that friction does not reverse the relative velocity 
between the particles. 

Applying this collision dynamics model and the assumptions listed above, the Boltzmann 
equation for the particle distribution function in a mixture of particles of s types may be derived 
following the standard procedure (e.g. Lifshitz & Pitaevsky 1981, pp. 7-11), yielding a set of 
coupled transport equations: 

~f(v, v, t) FFf~(v, r, t) ] 
~ t  -+- V r ' [¥ f l (v ,  r ,  t ) ]  + V v • [_ ?hi 

 f.f0" = S~(v, r, t )+  [(~J)fj(v', r, t~(v~, r, t) 
j = l  

-f/(v, r, t)~/(v1, r, t)] [(v-vl) "n]. or0 dv, d.O 

= S~(v, r, t)+I~OC, f), [8] 

where f  =f~(v, r, t) is the distribution function for particles of type i; r is a position vector; t is the 
time; F/m is the particle acceleration due to body forces and gas friction; Si(v, r, t) is the external 
source term for particles of type i; the velocities v' and v~ are related to v and vj by [3]; a0 is the 
collision cross-section, given as ~(d~ + d/)~/4 for a collision between particles of diameters di and 
d/; dfl is the differential solid angle; and Wv is the domain in the space of velocities. The (a/) factor, 
appearing in the collision term, arises from the above-mentioned inelasticity and friction in particle 
collisions, with J being the Jacobian of the transformation (v;, vj)~(v~, v~): 

J = [9] 
(dv~ dv/)" 

Ogawa (1983) eliminated the discontinuity in R by averaging it over 0, obtaining, for uniform size 
particles, 

d = ~R 2. [I0] 

In the case of elastic, frictionless collisions, J = I. The terms appearing on the l.h.s, of the 
Boltzmann equation describe the convective variations in f~(v, r, t) along the particle trajectories, 
while the/1(f,f) term describes the variation of the distribution function due to binary collisions 
between particles and the S~v, r, t) term accounts for external particle sources or sinks. 
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Since the above set of nonlinear integro-differential transport equations is as yet beyond 
analytical solution, numerical methods must be employed. Although the Boltzmann kinetic 
equation and Monte Carlo simulation methods have been extensively used to solve various rarefied 
gas dynamics problems, only a few attempts have been made to apply these methods to suspension 
flows. 

Shahinpoor & Ahmadi (1983) employed the Bhatnagar-Gross-Krook approximation for the 
collision term in the Boltzmann equation to investigate the flow of uniformly sized granular 
material without gas drag effects. The kinetic equation was solved by the Chapman-Enskog method 
to obtain expressions for the stress tensor and the flux vector of the random fluctuation energy 
in the granular material. Based on these expressions, a complete set of conservation equations was 
derived and solutions were obtained for granular material gravity flow over an inclined plane and 
for Couette flow. 

Jenkins & Savage (1983) have developed a simple kinetic theory for the rapid flow of identical, 
smooth, nearly elastic particles. Under the assumption that the distribution function is locally 
Maxwellian, they derived the first hydrodynamic approximation of the Boltzmann equation. The 
application of the obtained conservation equations to the shear flow of granular material between 
two moving plates yielded solutions in quantitative agreement with experimental data. However, 
this approach cannot resolve the difficulties associated with the formulation of boundary conditions 
and with the extension of the theory to account for dynamic interactions with the surrounding gas. 

Haft (1983) has applied a kinetic theory to determine transport coefficients for granular media. 
Although the approach applied was entirely heuristic, it provides a very penetrating analysis of 
kinetic effects in granular material flows. 

In another application to granular material flow, Ogawa (1983) employed the Monte Carlo 
method to find a solution of the Boltzmann equation for a spatially homogeneous flow of rotating 
particles of equal size, without external forces and gas drag, obtaining the distribution of the 
particle kinetic and rotational energy as a function of time. 

Pearson et al. (1984) applied the Monte Carlo method to describe the agglomeration of minute 
particles which take up the gas velocity instantly. Assuming space-homogeneity of all properties 
and letting particles adhere to each other upon contact, they calculated the evolution of the particle 
size distribution in laminar and turbulent flows. 

This work provides a method for the Monte Carlo simulation of a gas-solids suspension flow 
described by the above system of transport equations, taking into account gas friction effects, 
spatial nonhomogeneity and the size distribution among particles. Solutions are presented for pipe 
flows and impinging streams, pertaining to impinging streams reactors. 

2. EMPLOYMENT OF THE MONTE CARLO DIRECT SIMULATION METHOD 

2.1. Background 

In this work, the direct simulation Monte Carlo (DSMC) method, first suggested by Bird (1976) 
for solving the Boltzmann equation appropriate to rarefied gas dynamics, is adapted for simulating 
solid particle flow in a gaseous suspension. 

The key ideas of the DSMC method devised by Bird are: (a) the uncoupling of free molecular 
motion during a time step Atm from collisions, i.e. the use of the operator-splitting technique; (b) 
the simulation of molecular collisions by disregarding molecular positions within spatial cells; and 
(c) the simulation of fewer particles than those in the real flow, while normalizing the collision 
cross-section so that the collision rate is not changed. Assumption (a) is valid when Atm is smaller 
than the time between collisions and larger than the collision duration, and assumption (b) is valid 
provided that the cells are so small that the spatial variation of flow variables in the cell is negligible. 

The following is an outline of the operator-splitting technique in Bird's method. Let fT(r, v) 
approximate the distribution function at the nth time step, i.e. at time t = n • At,,. To obtain the 
solution f~ + J(r, v) at the (n + 1)th time step, we consider first the collisionless transport equation 

c9~ + V~(v~s) + Vv(F~,~ = S,(r, v, t), [11] 
dt \ m /  
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withfT(r, v) accepted as the initial value. At the second stage, f7 + ~(r, v) is obtained by solving the 
homogeneous Boltzmann equation 

t3f7 + ' 
t~t = ]~(fn+ ,,fn+ ,), [121 

with the solution ~ obtained at the first stage as the initial value. The solution of this equation 
at time (n + 1)Atm is found by sampling binary collisions between particles, as described below. 
The overall solution is thus accurate to the first order in both time and spatial increments. 

It is worth noting that properly setting the boundary conditions for the Boltzmann transport 
equations is rather difficult. A very important advantage of the Monte Carlo method is its 
suitability for treating boundary conditions in a natural, simple manner, as described below. 

2.2. Simulation algorithm 

Under the assumptions listed in the above formulation of the system of coupled transport 
equations, and employing Bird's assumptions (a) and (b) mentioned above, the DSMC method for 
the flow of a gas-solids suspension is described as follows. The flow system is divided into 
equal-volume cells. Simulated particles are distributed in the system, with their positions and 
velocities sampled from the initial distribution function. When a stationary system of transport 
equations is solved, the initial distribution function is chosen arbitrarily, and the stationary solution 
is obtained by relaxation techniques, i.e. as the long-time asymptotics of the nonstationary solution. 
Particles are allowed to move in the system, without colliding with each other, for a time interval 
Atm, with their subsequent positions and velocities determined from the particle's equation of 
motion. Within the time interval Ate, a particle may encounter a boundary: either an open 
boundary, where particles exit from the system; or a wall, where the particle's velocity after the 
collision (taken to be negligibly short) is calculated according to the model adopted for the 
collision's dynamics, i.e. the elasticity and friction. 

Following the collisionless motion, particles are allowed to collide with each other. Let N~,~ be 
the number of particles of type k in cell m having a volume Vm. The total number of particles in 
cell m is 

Nm = ~, N,.k. [13] 
k s l  

A pair of colliding particles of types i and j is sampled from the Nm particles with probability 
%vq/(e ~ v*), where vq is the relative velocity between the particles and v ~ and ~* are the maximal 
relative velocity and collision cross-section between particles of types i and j in the cell. Particle 
velocities after collision are calculated from [3]; the normal unit vector n at the collision surface 
is assumed to be distributed isotropically. After the collision, a time increment 

2vm 
Atq = [Nm.iNmjvijeq] [14] 

is added to a time counter T~ for the collisions between particles of types i and j, in cell m. The 
combination of particle types having the smallest value of the local time counter T~ is chosen for 
the next collision (Bird 1968); if all T~ values are zero, the combination is randomly sampled. This 
procedure is repeated until all T~ values exceed the value (n + 1) Atm. 

The expected number of collisions in cell m during a time interval At,, between particles of types 
i and j is given as 

m__ GiJ - -  
@ ij - -  N m , i N , . , j v i j A t m  ( - ~ m )  - -  OtijAtm' [15] 

where vq is the mean relative velocity between particles of classes i and j. The performance of the 
procedure depends upon the choice of cell dimensions and the value of the time increment Atm. 

2.3. Choice of particle properties 
Consider a dilute suspension of identical spherical particles. The mean spacing between such 
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particles, when uniformly distributed in space, is given as 

6 = d, [161 

where # is the average volume fraction of the particles in the system. An average mean-free-path 
between collisions can be estimated by elementary kinetic theory as 

d 
2 =  21/20 rid3 ] = (2t/2.6fl). [17] 

The upper limit for the particle volume fraction tim=, is given by the requirement that the 
mean-free-path between particle interactions be greater than the mean inter-particle spacing 6 (Soo 
1976). Using the condition 2 = 6 and [16] and [17] yield flm~ = 0.055. However, a more restrictive 
requirement on fl is implied by the assumption that the suspension is sufficiently dilute that only 
binary inter-particle collisions need be considered. 

Clearly, the statistical description of the flow of solid particles is valid only when the number 
of particles in a unit volume is sufficiently large [see also Haft (1983)]. In the flow systems considered 
in this work, the solid particle volume fractions are of the order of 0.001, which, for particles of 
dia d = 1 mm, corresponds to particle number densities of the order of ~ l0 s particles/m 3. 

In the formulation of the transport equation [8], the deviation in trajectories of approaching 
particles due to hydrodynamic forces was neglected. This deviation causes a reduction in the 
particle collision rate by a factor known as the "fraction impacted" or the collision efficiency. For 
spherical particles of diameter ds moving with a gas at speed U and colliding with larger particles 
of diameter dl, the "fraction impacted" may be neglected [according to data in Soo (1967, p. 193)] 
when the distance travelled by the smaller particles during the Stokes relaxation time is considerably 
larger than the diameter of the large particle: 

pp Ud~ 
- -  > l O 0 ,  [18]  
(181tGdl) 

where/~G is the gas viscosity. For solid particles flowing in a gas, the small gas viscosities and the 
high particle densities relative to the gas render this effect negligible, unless particle size or velocity 
are very small. 

In order to examine the validity of neglecting the collision duration, consider the expression 
provided by Soo (1983) for the duration of a collision between two identical spheres: 

I 2 2/5 _~ pp(1 -- Vp)"] At~oz=2.94v~t/ScosO-3/Sd 5(1+~) 16-E" j , [19] 

where vp is the particle's Poisson ratio, pp--its density and E--i ts  Young's modulus, and the 
hydrodynamical relaxation time for Stoke's law is 

PPd2 [20] 
Th = (18/~O) " 

According to [15] and [16], the collision frequency for a single particle of type i is given as 

2 6# 
, n(d,+dj) v,:(-~) [21] 

vi= ~, 4 
j=l 

For characteristic values of d =0.001 m, Po = 1000kg/m3, # = 0.01, /~,ir = 1.75 x 10-Skg/ms, 
e = 0.8, 0 = 45 °, v~2 = 0.1 m/s, vp = 0.4 and E = 5 x l09 Pa, one obtains Afoot = 8.9 x 10 -6 S, 
T h = 0 . 1 8  S and 1Iv = 6s (for 0 = 89.99 °, one obtains At~ol= 1.3 x 10-3s). Thus, the collision 
duration can be neglected. 

A certain restriction may arise concerning the relation between the hydrodynamieal relaxation 
time, ~h, and the mean time between collisions, 1/v. The assumption that colliding particles have 
uncorrelated velocities, necessary for the derivation of the transport equation [8], is valid for gas 
dynamics due to the high rate of collisions between molecules (in addition to the high particle 
number densities). Since suspension flow involves a much smaller inter-particle collision rate than 
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the molecule collision rate in gas flow, the hydrodynamical dampening of post-collision velocities 
should be strong enough to prevent such a correlation. If the hydrodynamical relaxation occurs 
too quickly, particles have small relative velocities in relation to the gas, so that their velocities are 
highly correlated with respect to the gas velocity at the location of the collision. 

The latter conclusion is equivalent to the requirement that the particle self-collision Knudsen 
number Kn = 2/D = d/(2]a6/3D), where D is a characteristic macroscopic length, must not 
considerably exceed the Kn for particle collisions with gas molecules, S = zh U/D, where U is a 
characteristic flow velocity. Particularly, in cases where S ,~ Kn, the effect of inter-particle collisions 
is insignificant, since the particles take up the gas velocity instantly. 

2.4. Choice of  cell dimensions 

Bird (1976) set a cell dimension h, in a direction across which the particle concentration and 
average velocities vary, as h < 2/3. Still, an upper limit for h, which normally does not arise for 
gas molecules, is given by the stipulation that h be much greater than d (at least by one order of 
magnitude) so that calculating collisions only within ceils is permissible. A general limitation for 
h is that it should be small enough that the spatial variation of the flow variables in the cell is 
negligibly small, while large enough to avoid long calculation times. 

2.5. Choice o f  time increments 

Bird (1976, p. 119) suggested taking At,, smaller than the mean time between collisions I/v, so 
as to validate the uncoupling of the collisions between particles from their collisionless motion. 
When mixtures of particles of different sizes are considered, Atm should be taken smaller than the 
shortest estimated 1Iv, 

It should be noted that the stability of the explicit two-stage operator-splitting procedure 
described above (see [11] and [12]) requires that the time increment and cell size satisfy the 
Courant-Lewy-Friedrichs condition, whereby At,, < h/v*, where v* is a characteristic particle 
velocity. This condition is consistent with [17] and [21] for 2 and v and Bird's requirement that 
At,. < 1Iv. 

2.6. Equation o f  collisionless particle motion 

When only fluid drag acts upon particles during tin, a particle's trajectory is calculated by 
integrating the ordinary differential equation 

~5  = 0.75C0 [U - vIou - v) + g, [221 

where U is the gas velocity at r, g is the gravity acceleration and CD, the gas drag coefficient for 
a single spherical particle, is correlated as (Clift et ai. 1978, p. 112) Co =f(R%),  where 

Rep = PG dIU - v[ [23] 

When the gas shear induces a considerable lift on the particles, [22] is modified by taking account 
of the Saffman (1965) force, acting in the radial direction and having a magnitude 

2 /2  1.61/~ PG (U~ -- vz)d 2 

Fs = , [24] 
dU~ I 1/2 

where r and z are the radial and axial coordinates, respectively. The Saffman force causes transverse 
migration of solid particles having smaller axial velocities than that of the gas in the direction of 
the axial velocity gradient; the direction of the Saffman force is reversed when a particle's axial 
velocity exceeds that of the gas. Notably, Saffman's (1965) theoretical prediction of the lift force 
due to shear-slip effects was derived for unbounded ambient fluid flow with uniform shear, with 
R% < 1. However, exl~rimental results reported by L ~  (1982, p. 11) confirmed the validity of [24] 
for rather general flow patterns. Saffman showed that the lift force induced by particle rotation 
in the gas shear flow is generally small compared to Fs [see also Lee (1982, p. 11)]. The Saffman 
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force need not be considered if its ratio with respect to the drag force FD is sufficiently small (See 
1967, p. 28), i.e. Fs/Fo = 2.15[d2(dU/dr)pG/#G] I/2 ~. 1. 

The effect of gravity may be neglected when the velocity which a solid particle can acquire during 
the hydrodynamical relaxation time %, due to buoyancy and gravity forces, is much smaller than 
the characteristic velocity in the vertical direction U (See 1969): 

PG 

<~ 1. [25] 
U 

In this work, the added mass, Basset history and pressure gradient terms in the solid particle 
equation of motion are neglected. These terms are of very marginal significance for the flow of 
relatively large solid particles in a gas [see also Lee & Wiesler (1987) and See (1976)]. Brownian 
motion of particles is also neglected, since this effect is negligible for large solid particles, and in 
convective flows may also be insignificant for aerosols [see also Boothroyd (1971, p. 15)]. 

The effect of the particle flow on the flow pattern of the carrier gas is also neglected. This 
dynamical uncoupling is justified for laminar flows if the particle volume fraction in the system 
is sufficiently small that the gas flow is not affected significantly, and the wakes caused by particle 
motion decay rapidly. It must be noted that although the instantaneous relative velocity in the flows 
studied in this work is rather high, the time-averaged relative velocity is relative small. The 
estimated time-averaged ratio between the stress exerted on the gas by the solid particles to the 
gas pressure gradient in the absence of solid particles was low for all flows considered. Moreover, 
experimental results reported by See (1967, p. 169) show that the change in the gas velocity 
distribution caused by the presence of solid particles is generally small. 

3. CASES STUDIED 

The following representative cases, all pertaining to elements of impinging streams reactors, are 
examined with a particular emphasis on calculating particle concentration distributions. Particle 
rotations are neglected, as their effect in the cases examined is expected to be secondary. 

3.1. Laminar flow in a pipe 

Gas-solid particles suspension flows in pipes are often encountered in industrial systems. A 
typical example is the flow in the feed section of an impinging streams reactor (figure 1). Consider 
first laminar gas flow free of entrance effects. The gas axial velocity profile in a pipe of diameter 
D is then given by the Poiseuille profile, i.e. U~ = 2U[1 -(2r/D)2], where U is the average gas 
velocity in the pipe. Solid particles entrained by the gas will undergo collisions with the surrounding 
particles, due to velocity differences between particles located at different radii. Moreover, it has 
been shown (Voinov & Petrov 1977) that the stationary motion of small solid particles in a potential 
flow of an ideal fluid is unstable; this instability may be another cause for inter-particle collisions 
in laminar flows. 

For a steady flow, only variations across the radial direction of the pipe are of interest, hence 
an ensemble of particles is followed, disregarding the axial positions of particles. This procedure 
can be regarded as limited to a pipe segment with periodic boundary conditions at its ends, i.e. 
a particle leaving through one side is immediately replaced by another particle at the opposite side, 
having the same velocity and radial location. 

3.2. Turbulent f low in a pipe 

Consider next turbulent pipe flow of a suspension. The turbulent pulsations in such flows can 
induce radial particle motion, even if particles do not collide with each other. Lee (1987) has 
recently attempted to analyse this problem phenomenologically by considering the interactions 
between the particles and the turbulent flow field, applying the simple pseudo-Stokes law with 
modified turbulent velocity. A correlation was provided for the coefficient of the turbulent velocity 
in terms of the particle size and concentration, the local flow Reynolds number and the ratio 
between particle and fluid densities. This work aims to provide further insight into this phenomenon 
by analysing the effects of direct inter-particle collisions. 
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The generally adopted approximation for the gas velocity distribution in a turbulent pipe flow 
is 

u-125 z- * 
o( > 

l-2’ “’ 
D 

+U: 

and 

u,= u; 1271 

where the turbulent pulsation velocities, u: and u:, are zero for 2r/D > 0.8 and are otherwise 
assumed to be normally distributed random variables with zero mean and standard deviations 

,FyS,= -18.89(1 -$‘++43.51(1-;) 

z 

-33.43(1 $Y+9.17(1 -;)+o.,, WI 

and 

,~~~,=-3.05(1-~)‘+5.18(1-~~-1.54(1-~)’+1.98(1-~)+2.11, [29] 

z 

where fF, the Fanning friction factor for the gas in the pipe, is taken from Perry & Chilton (1973, 
Chap. 5, p. 22) as a function of wall roughness and the pipe Reynolds number, Re, = Dop,/pG. 
Expressions [28] and [29] for the root-mean-square values of the fluctuating components of the fluid 
velocity were obtained by Yoshida & Masuda (1980) using the least-squares method to correlate 
Laufer’s (1954) measurements of turbulent pipe flows. 

Turbulent velocity pulsations are assumed constant during the average lifetime of a turbulent 
eddy, estimated as the Lagrangian time scale of the turbulent gas flow (see Hinze 1975, p. 426): 

O.OS[(u:)* + (u:)? 
ZL = 3 1301 

et 

where E, is the specific energy dissipation rate. In turbulent pipe flow of a particle-free gas, 
E, = 283fF/D. 

Clearly, this approach would be a rather rough approximation for an inhomogeneous non- 
stationary turbulent velocity field. Nevertheless, Lawn’s (197 1) measurements of the turbulent 
energy dissipation and the spectral distributions of stress components in the core of a turbulent 
pipe flow strongly suggest that the turbulent velocity field is locally homogeneous and stationary 
for Re, > 105. Another condition for the validity of the above approach is that the particles should 
not be affected by the motion of the smallest eddies. The latter requirement is violated when the 
hydrodynamical relaxation time r,, is of the same order of magnitude as the characteristic time for 
the motion of the smallest eddies, rS = [C1c/(~oeJ]‘/*. Then, using [20] for rh, the restriction on the 
particle diameter is 

[311 

where LK is the Kolmogorov microscale length, LK = bb/(p$,)] . ‘I4 Therefore, for large values 
of pp/pG - 1000, as studied in this work, only particles smaller by two orders of magnitude than 
the Kolmogorov microscale length may respond to the smallest eddies. For air flow with a 
characteristic value of E, = 300 W/kg, LK N 0.06 mm, so that the above restriction is violated only 
for submicronicparticles. For comparison, let us calculate the Lagraan scale for characteristic 
flow values of (u’*)‘/* = 2 m/s and E, = 300 W/kg, obtaining LL = T~(u’*)‘/* = 2 mm, which is of the 
same order of magnitude as the diameters of solid particles studied in this work. 
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The assumption equivalent to "molecular chaos" in the formulation of the Boltzmann equation 
requires in the case of turbulent suspension flow that: (i) the turbulent of the suspending fluid be 
isotropic on the length scale of the collision process; and (ii) particles be projected at each other 
from independently moving fluid elements. In the stochastic model described above, the above 
assumption is implied by sampling for different particles' independent gas fluctuation velocities. As 
discussed by Abrahamson (1975), condition (i) is likely to be met in industrial pipe flows of gases 
at sufficiently high Reynolds numbers, where the characteristic correlation length of the turbulent 
velocity field is much smaller than the particle's free path length and diameter. Condition (ii) 
requires that the particle's hydrodynamical relaxation time Zh be larger than the Lagrangian time 
scale ZL, since ZL may be regarded as the average time for fresh fluid to surround a large particle, 
or as an average time for a very small particle to travel the minimal correlation length scale of the 
turbulent velocity field. Abrahamson (1975) showed that the condition Zh>>ZL implies that 
d2>> 151.tG(U'2)/(pp~t), which is easily met for solid particles > 100 pm, flowing in a gas, in most 
industrial systems. 

To account for shear-induced lift forces acting upon particles flowing in a turbulent gas, the shear 
may be approximated by only considering gradients in the average gas velocity. 

The modulation of the gas turbulence pattern by the presence of the particles is neglected. 
Experimental investigations (e.g. AI-Taweel & Landau 1977) have shown that turbulence modula- 
tion by 60mm particles was significant at particle volume fractions as small as 1 x 10-4m. 
However, the turbulence modulation may be less significant for larger particles with similar volume 
fractions. Owen (1969) derived estimates for the change in the turbulence intensity and energy 
dissipation rate due to the presence of particles in dilute suspensions: 

and 

8~ ---- 

t 1 J~PP] I/2, T h a t  L [Ut2( j  ~ > 0)]  1/2 [ -1" RG _~ 

. \ PG : \ Z h , / J  

¢ ~t(~>0) I ]~,Op]. 
=~,(/~ =0~" 1 + PO_I 

[32] 

[33] 

turbulent flow fluctuations. Clearly, when rh >> ZL, the particle motion is not influenced by 
Expression [32] was obtained by comparing energy production and energy dissipation rates under 
the assumption that the turbulent length scale is unaffected by the presence of particles. Substituting 
characteristic values of the flow parameters used in this work (fl =0.001, pp/pc= 1000, 
tT-~ Z5 m/s, d = 1 mm, D = 0.2m, Re0 = 500, (u'2)1/2 = 1 m/s), one obtains Zh = 3.8 S, ZL = 0.01 S, 
X = 0.999 and ~ = 2. Thus, the modulation of the energy dissipation is seen to be significant, 
whereas the turbulence intensity may be virtually unaffected by the presence of particles. 

3.3. Impinging streams zone 
The countercurrent flow configuration in impinging streams reactors causes, as a side effect, 

collisions between particles, especially between those moving in opposite directions. Collisions often 
result in increased particle radial velocities, hence a decreased residence time in the reaction zone. 

Applying expressions obtained from a potential-flow analysis of a gas jet colliding with a wall, 
the gas velocity profile in the inter-nozzles region (for Izl < H and r < D/2) is given as 

-zUo 
Uz = - -H--  [34] 

and 

rUo 
U, = (2H)' [351 

where U0 is the jet's initial uniform axial velocity and H is the distance from the jet's entrance point 
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to the wall (plane of impingement, in our case). Elpefin (1972) employed this model to perform 
a qualitative analysis of collision effects in an impinging streams reactor. It is noted that this 
velocity distribution is not valid at the exit from the feed pipes. As an approximation, a 
discontinuous gas velocity profile may be applied, with [34] and [35] used in the inter-nozzles region 
(for Iz[ < H and r < D / 2 ) ,  and U~ = -zUo/Izl and U, -- 0 for all [z[ >i H and r < D/2. 

In the Monte Carlo simulation, following each time interval Atm, a quantity of 3At m flUoD 2/(2d3) 
particles is added into the control volume, in accordance with the gas and particle flow rates. In 
order to simulate continuous particles feed, to each injected particle is assigned an initial axial 
location calculated by integrating the particle's equation of motion [22] during a uniformly 
distributed random fraction of tm, with initial conditions v(t = O)= Vo and z(t =0)= L (or 
L = - L ) .  Each particle's initial radial location is sampled from a two-dimensional uniform 
distribution. The initial particle axial velocity v0 is determined as a fraction of the jet inlet velocity, 
U0. The value of v0 depends upon the length of the channel where particles are accelerated before 
entering the reactor, so that the lack of kinematic equilibrium between the particles and the carrier 
gas can be taken into account. In the region - H  < Z < H (see figure 1), particles exit from the 
reactor upon crossing a cylindrical surface of radius D/2. Particles reaching the plane z = L or 
z = - L  arc specularly reflected back into the simulated control volume. 

When the particle flow rates in both streams are equal, the symmetry with respect to the 
impingement plane is exploited by simulating the particle motion on one side of the control volume, 
with the plane of symmetry taken to be a specularly reflecting wall. 

The Saffman force may be neglected in this case, since the gas velocity in the feed pipes is assumed 
uniform, and the radial drag in the impingement zone is normally much stronger than the 
shear-induced lift. 

It is worth noting that the obtained solution may also serve to describe the impingement of a 
suspension jet on a plane surface, particularly with regard to the effect of particle collisions on 
surface erosion and heat transfer, e.g. in a rocket exhaust plume or for enhancing heat transfer 
from a wall (Kitron et al. 1989). 

4. RESULTS AND DISCUSSION 

Simulations of the various flow systems were performed with the time interval At,, set equal to 
the estimated 0.1/v. The flow field must be simulated during about 800 time intervals in order to 
obtain the steady-state particle distributions. In the absence of gravity, the approach of the particle 
axial velocity profile to that of the gas served as a useful indication for the approach to the steady 
state. 

The results obtained were particularly interesting with respect to the radial distribution of the 
particle concentration. The distributions of particle concentrations for pipe flows are presented in 
figures 2-5. 

The low sensitivity of the numerical solution with respect to the number of particles allocated 
per cell was established by a comparison of solutions obtained for pipe flows with different numbers 
of cells, which indicated that increasing the number of cells above 10 did not change the 
concentration distribution patterns significantly. 

In laminar flow in a pipe, starting from a uniform radial particle concentration, neglecting the 
Saffman force and gravity and for uniformly sized particles, a build-up of particle concentration 
towards the wall and, to a lesser extent, towards the pipe core was observed when inter-particle 
collisions were taken into account (figure 2). 

While lift forces such as the Magnus and Saffman forces could account for the particle drift 
towards the pipe axis, as explained in section 2.6 above, only a few explanations have been 
proposed to account for the drift away from the axis. Soo (1969) accounted for the drift away from 
the axis by employing a particle diffusivity attributed to the perturbation of the flow fields by the 
particles. 

An alternative mechanism for particle diffusivity due to inter-particle collisions can be proposed 
on the basis of the numerical results. Particles colliding at the pipe core may be deflected towards 
the wall, where they are slowed by the gas flow near the walls. Due to their small velocities, particles 
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near the wall collide less frequently and hence are less likely to return to the pipe core. Particles 
may also lose velocity by colliding with the wall and, consequently, remain near the wall. The latter 
effect is similar to the deposition of "granular heat" near walls, described by Haft (1983) for the 
flow of dense granular materials. Furthermore, particles deflected towards the wall may reach a 
zone where their axial velocity exceeds that of the gas, and will thus be drawn by the Saffman force 
farther towards the wall. 

A weaker effect due to particle collisions is the concentration maximum at the pipe core. This 
effect may be attributed to the small velocity gradient in the pipe core, causing relatively low particle 
collision rates. When the Saffman force is taken into account, the lag of particle velocities relative 
to gas velocities results in an inward force, producing a predominant concentration at the pipe core. 

Notably, radial migration of solid particles may be caused by local instabilities in shear flows 
(see Fichman & Pneuli 1987)• A small perturbation in the motion of particles of diameter 

a > 2  36(P~l-"[(P°~(dU~ll -'j~ 
• \-~GI L\-~G}\~II 

[36] 

will cause them to migrate with increasing velocity in the direction of the perturbation velocity 
perpendicular to that of the main flow. Thus, Fichman & Pneuli deduced that particles in regions 
where the above criterion is met will tend to migrate away from these regions. Thus, in laminar 
pipe flows the small velocity gradient in the pipe core may be expected to cause particles to 
concentrate in this region. In the analysed flows, criterion [36] was always met at some locations 
in the pipe (e.g. for the conditions in figure 2 and at r =D/4, 2.36(pp/p6)-~/3[(pG/#G) 
(dUz/dr)] -L/2 = 0.74d). Since inter-particle collisions may be regarded as a perturbation of particle 
velocities, the migration towards the pipe core may be accounted for by the above mechanism. As 
for the migration towards the pipe wall, one should note that since the collisions rate near the wall 
is likely to be relatively low (due to small velocities near the wall), perturbations in this region will 
also be less frequent, so that particle migration away from this zone will also be relatively small. 

In the absence of particle collisions, corresponding to the particle volume fraction tending to 
zero, the particles remain uniformly distributed. Increasing the particle volume fraction to < 1% 
enhances particle migration towards the wall. A further increase in the particle volume fraction 
causes a rise in the particle concentration at the pipe core and near the wall, with an additional 
peak formed at an intermediate zone between the wall and the pipe core (figure 2). The reason for 
the appearance of this additional peak is apparently the screening effect of high particle 
concentrations near the wall, preventing particles from reaching the wall. 

When gravity was taken into account, in vertical pipe flow with values of the Froude number, 
Fr = U2/(gD), of the order of 10, the radial concentration gradient vanished. The effect of gravity 
to reduce the radial gradients in vertical pipe laminar flows may be explained on the basis of the 
above reasoning. When gravity is taken into account, particles in the region adjacent to the wall 
no longer maintain small velocities. Rather, they soon attain a high downward velocity which can 
cause them to collide with particles which penetrate into this region and thereby attain a radial 
velocity, allowing them to migrate back into the pipe core. 

Thus, the solutions shown in figure 2 represent limiting cases. The significance of gravity effects 
in vertical pipe flows may be assessed by combining [20] and [25] above, to obtain the following 
condition for neglecting gravity effects: 

Fr 
< 1, [37] 

where Re0 = pGdtT/#G. 
Moreover, neglecting the Saffman force in this case is not justified, since when this force is taken 

into consideration, an overwhelming migration of particles towards the pipe core is obtained. 
Solutions for laminar pipe flows (in the absence of gravity and the Saffman force) indicate that 

the concentration gradient near the wall increases when increasing either of the following 
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parameters: the particle Reynolds number Re0, the ratio between the particle and the pipe 
diameters, and the solid to gas densities ratio, pp/Pc. The dependence of the concentration gradient 
on these parameters may be examined by expressing the hydrodynamic Knudsen number as 

S = ~h~ 18 [38] 

Thus, increasing the parameters which increase the concentration maximum near the wall, i.e. 
pp/pg, Re0 and d/D, all result in an increase in S; this is because an increase in S indicates a weaker 
effect of the particle-gas interactions and thus an increase in the effect of inter-particle collisions. 
Increasing diD also increases Kn and hence may be expected to exert an ambiguous influence over 
the concentration maximum; nevertheless, its tendency to increase the concentration maximum 
appears predominant. 

The deviation of the particle collision dynamics from the elastic, frictionless collision model 
reduces the concentration gradient near the wall. Nevertheless, for deviations of the order of 0.2 
in the values of the elasticity and friction parameters (e, ~/) from the values corresponding to ideal 
model of perfect elasticity and no friction, the particle concentrations were virtually the same as 
for the ideal model. This means that the solution is not strongly sensitive to the collision parameter 

• values, which is important since the values of such parameters are difficult to measure. 
Turbulent pipe flows were simulated for Re0 values above 100 and particle sizes of diD = 0.005 

or smaller, so that Reo = ReoD/d was of the order 1 x 105, and thus the assumption of a locally 
homogeneous and stationary turbulent velocity field was valid. Moreover, as discussed above, for 
the simulated conditions (Re0 '~ 500, d/D ,,, 0.005, Pp/PG '~ 1000) the values of ZL (see [30]) and T h 
(see [20]) may be calculated as TL " 5D/U and Zh "" 100D/U, SO that for fl ~ 0.001 [32] indicates 
a negligible modulation of the gas turbulence intensity caused by the presence of solid particles. 

In turbulent pipe flows, for equal size particles with a uniform inlet concentration distribution 
over the pipe cross-section, a build-up of the particle concentration towards the wall and towards 
the pipe core was obtained in several cases (figures 3 and 4). This trend was obtained for vertical 
pipe flow, taking account of gravity and the Saffman force with respect to the average gas velocity 
shear, both with and without inter-particle collisions. 

A migration towards the core, in the absence of inter-particle collisions, has been predicted by 
considering gas shear-induced forces (Saffman force etc.) acting upon particles (see Yuu 1980). 
Similarly to the arguments presented in the above discussion of laminar flows, the radial migration 
towards the pipe wall may be attributed to the "trapping" of particles in the slow-moving laminar 
gas layer, where no radial gas motion is present. The radial migration may be induced by radial 
velocities of turbulent eddies, as well as by inter-particle collisions. 

The Saffman force did not affect the concentration distribution pattern significantly. Also, unlike 
the case of laminar pipe flows, the effect of gravity does not prevent the radial migration of 
particles; this is because in turbulent gas flows Fr values are likely to be larger, due to the high 
gas velocities. Moreover, in turbulent pipe flows [37] above will be more likely to hold than in 
laminar flow systems. 

Increasing the particle volume fraction to 0.0015 caused an increase in the concentration peak 
near the wall (figure 3); this indicates that inter-particle collisions intensified the particle migration 
mechanism described above. A further increase in fl to 0.015 resulted in a smaller concentration 
peak near the wall (figure 3). A plausible explanation is that at high collision rates, the enhanced 
momentum transfer between particles hinders the formation of large concentration gradients. 

As demonstrated in figure 4, an increase in the solid to gas densities ratio Pp/PG resulted in an 
increased concentration maximum at the pipe core and higher particle concentrations close to the 
wall. Increasing the particle diameter, the particle Reynolds number, Re0, and the elasticity of 
inter-particle collisions similarly enhanced these concentration maxima. These effects can all be 
accounted for, as in laminar flow, by the increase in the hydrodynamic Knudsen number S, [38]. 

Since, as discussed above, the phenomenological model employed for the turbulent flow field 
involved several adjustable parameters in the expression for the Lagrangian time scale ~L, the 
sensitivity of the model to variations in these parameters was tested by changing the coefficient in 
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Figure 2. Effect of  particle volume fraction on  particle radial concentrat ion profiles in laminar  flow in 
a pipe (no gravity or  lift forces, Re 0 = 5, d/D = 0.005, Pp/PG = 1000, ~ = 1, r / =  0, ~, = 1, qw = 0). 
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Figure 3. Particle radial concentrat ion profiles in turbulent  
flow in a vertical pipe, with and without  eollisoins and for 
different particle volume fractions (Re0 = 500, d/D = 0.005, 

Pp/Po = 1000, ~ = 1, q = 0, e w = 1, qw = 0, F r  = 8000). 
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:Figure 4. Particle radial concentrat ion profiles in turbulent  
flow in a vertical pipe, for different particle to gas densities 
ratios (Re0 = 500, F r  = 8000, d/D = 0.005, # = 0.0015, 
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Figure 5. Particle axial concentrat ion profiles along the core (0 < r < 0.275D) of  an impinging streams 
reactor. Lef t - -exper imenta l  results (Elperin 1972); right--simulation results, following 800 simulation 
intervals of  durat ion O.092L/Uo each. [No lift forces or  gravity, particle inlet axial velocity = 0.1Uo, Re0 
(based on velocity U0) = 1808, l/i~t = 6.1 x 10 -4, d/L =0.00337, D/L = 0.0714, H/D = 0.5, Pp/Po = 933, 

t = 1, q = 0, ~ = 1, % = 0, each side of  the reactor divided into 20 axial cells]. 



MONTE CARLO SIMULATION OF GAS--SOLIDS SUSPENSION FLOWS 15 

[30] for T L. Increasing TL by a factor of 2 (for Re0 = 500, d/D = 0.005, Pp/PG ---- 1000, fl = 0.0015) 
hardly affected the concentration pattern. 

To study the validity of the predicted concentration distribution patterns, calculations were made 
for some turbulent suspension flows for which experimental results have been reported. Lee & 
Durst (1982) reported that in a vertical turbulent pipe flow of glass particles suspended in air 
particles tended to migrate towards the pipe core. Numerical simulation for the corresponding flow 
parameters (d/D = 0.001, Pp/PG = 880, 1/ = 0.00063, Re0 = 80, Fr = 80) yielded concentration 
maxima both at the pipe core and near its walls. Notably, the numerical results show an increase 
in the particle concentration towards the core over most of the pipe cross-section, while the 
concentration maximum near the wall is restricted to a very narrow layer. In vertical turbulent pipe 
flow, the concentration maximum near the wall might not be detected in experiments because of 
the enhanced fallout of particle clusters. In Lee's (1987) analysis of the concentration distribution 
patterns reported by Lee & Durst (1982), the migration towards the core is attributed to lift forces 
(Saffman force etc.). Nevertheless, in the vicinity of the wall Lee predicts a significant fluid drifting 
velocity towards the wall, due to the large concentration of particles at the core. The large values 
of the fluid velocity towards the wall and the large turbulent viscosity cause a considerable increase 
in the drag force on the solid particles. Particles are thus propelled towards the wall and once they 
have penetrated a region where their axial velocity exceeds that of the gas they continue to move 
towards the wall under the action of the Saffman force, which is enhanced by the increase in the 
fluid's turbulent viscosity. This mechanism may cause migration of large particles towards the pipe 
wall. While Lee suggests that the radial migration of particles towards the wall is caused by the 
change in the turbulent viscosity in two-phase suspension flows, the results obtained in this work 
allow us to explain the same phenomenon by considering direct interactions between particles. 

In simulations of turbulent pipe flows of mixtures of particles of different size or density, the 
concentration gradients for the particles were generally more pronounced than in their single-com- 
ponent flow under identical conditions. Similar patterns were obtained for laminar pipe flows of 
particle mixtures, in the absence of gravity. The reason for the increased particle migrations is that 
flows of particle mixtures generally involve higher collision rates than in corresponding single type 
flows, due to differences in the response to the flow field between particles of different size or 
density. 

In the analysis of the flow in the impinging streams reactor shown in figure 1, the flow parameters 
used in Elperin's (1972) experiments were employed, while the assuming particle inlet velocities to 
amount to 10% of the gas velocity. In the absence of gravity, the steady state was not obtained 
in the simulation, with particles accumulating in the impingement zone; nevertheless, calculations 
were made in the absence of gravity so as to indicate the net effect of inter-particle collisions. The 
particle concentration distribution profiles over the reactor core, calculated following 800 time 
intervals of size O.092L/Uo (so that for L = 0.3 m and U0 = 30 m/s, At,, = 0.009 s) are presented in 
figure 5 for symmetrical and one-sided injections of particles. The results are in qualitative 
agreement with those reported by Elperin (1972) (see the left-hand part of figure 5); quantitative 
agreement is not possible due to the omission of gravity effects in the calculation. Results obtained 
for collisionless flow, aimed at investigating the extent of the effect of collisions on the exiting of 
particles from the system, display extremely high concentrations in the impingement zone, 
indicating that collisions considerably reduced the particle concentration in the impingement zone, 
in agreement with Elperin's (1972) assessment. 

The simulation of a one-sided injection of particles demonstrates the penetration of particles 
from one stream into the other, and the effect of particle collisions due to particle oscillations 
between the opposite streams. The particle collision rate is higher for a two-sided feed compared 
to a one-sided feed, resulting in decreased residence times and decreased distance of penetration 
into the opposite stream. 

It must be noted that the build-up of particle concentration in the vicinity of the impingement 
plane is due to the familiar process of particle accumulation in a zone of flow stagnation. 
Nevertheless, the penetration of particles from one stream into the other is clearly visible in the 
case of a one-sided particle feed, and the effects of collisions between particles from opposite 
streams as well as collisions with particles oscillating between the streams are quite pronounced 
in the results obtained with the aid of the model presented above. 

MF 16/I--B 
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